Convexity Properties of Thompson ’ S Group F

نویسنده

  • MATTHEW HORAK
چکیده

We prove that Thompson's group F is not minimally almost convex with respect to any generating set which is a subset of the standard infinite generating set for F and which contains x1. We use this to show that F is not almost convex with respect to any generating set which is a subset of the standard infinite generating set, generalizing results in [HST].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On difference sequence spaces defined by Orlicz functions without convexity

In this paper, we first define spaces of single difference sequences defined by a sequence of Orlicz functions without convexity and investigate their properties. Then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.  

متن کامل

Four applications of majorization to convexity in the calculus of variations

The resemblance between the Horn-Thompson theorem and a recent theorem by Dacorogna-Marcellini-Tanteri indicates that Schur convexity and the majorization relation are relevant for applications in the calculus of variations and its related notions of convexity, such as rank-one convexity or quasiconvexity. We give in theorem 6.6 simple necessary and sufficient conditions for an isotropic object...

متن کامل

Thompson ’ S Group F Is Not Almost Convex

We show that Thompson’s group F does not satisfy Cannon’s almost convexity condition AC(n) for any integer n in the standard finite two generator presentation. To accomplish this, we construct a family of pairs of elements at distance n from the identity and distance 2 from each other, which are not connected by a path lying inside the n-ball of length less than k for increasingly large k. Our ...

متن کامل

A general framework for path convexities

In this work we deal with the so-called path convexities, defined over special collections of paths. For example, the collection of the shortest paths in a graph is associated with the well-known geodesic convexity, while the collection of the induced paths is associated with the monophonic convexity ; and there are many other examples. Besides reviewing the path convexities in the literature, ...

متن کامل

SOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING

Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008